
MODIFICATION PATTERNS FOR INTELLIGENT TEMPORAL VIDEO SCALING IN AN
ADAPTIVE ENVIRONMENT

Michael Kropfberger, Klaus Leopold, Hermann Hellwagner

Department of Information Technology
University Klagenfurt, Austria�

mike, klaus, hellwagn � @itec.uni-klu.ac.at

ABSTRACT

This paper discusses adapting (scaling) an MPEG-4 video to
comply with a given (or changing) network bandwidth. We differ-
entiate between realtime and non-realtime video adaptation, which
is to be performed by routers and (proxy) servers, respectively.
Mainly we will look into temporal video scaling, which simply
means dropping the least important frames. This can be done on
the fly, in a realtime manner, on a router with extended functional-
ity.

To do so, we have to look into the patterns of frames existing
in a video. Those patterns (and correspondingly, the video data)
can be modified in different ways such that, e.g., varying network
bandwidth can be closely matched. Such modification patterns
and their effectiveness (in terms of bandwidth reduction) must be
communicated to the routers in order to enable them to take “intel-
ligent” scaling actions.

We describe the concept of modification patterns and show
how they are periodically communicated to, and utilized by, routers
for scaling and transmitting a video stream. Furthermore, we in-
troduce an efficient binary representation for them.

1. INTRODUCTION

Streaming video in a best effort network environment has to quickly
adapt to changing bandwidths. This adaptation has to happen as
close to the clients as possible, so we work on an adaptive video
streaming architecture not only including a video server, but also
active routers and video caching proxies. The latter two compo-
nents are to be enabled to operate on video streams and adapt them
to the current network situation, the requesting terminals’ capabil-
ities, or the users’ preferences.

The easiest and fastest way of adaptation is to simply drop the
least important frames. This paper will show new ideas on gener-
ating more sophisticated adaptation patterns on this basic idea and
outline an overall environment how these new adaptation patterns
can be transferred onto a real best effort multicast network.

2. VIDEO ADAPTATION METHODS

MPEG-4 [1] supports different profiles [2] specifying how video
might be coded and furthermore scaled to different qualities. Con-
cerning adaptability and scalability in the context of video trans-
mission over networks, we have to differentiate between realtime
and non-realtime scaling of video streams. Realtime methods can
be handled on a router while forwarding the packets containing

video data. Non-realtime adaptation methods, e.g., more extensive
transcoding, have to be performed at the video server or a proxy
server. In this paper, we will focus on realtime methods.

Realtime scalability describes all possibilities for intermediate
devices on the way between the video server and the client, to
react and adapt to the actual network load or other environmental
influences, always without delaying the video playback. Methods
for realtime scalability are:

� Temporal Scalability
� Spatial Scalability
� Quality (SNR) Scalability
� Fine Granular Scalability (FGS) [3]

In the following, we will focus on efficient temporal video
scaling. However, the principal ideas will be applied to other real-
time scalability methods in future work.

3. MODIFICATION PATTERN GENERATION

Concerning MPEG-4 video elementary streams [4], three video
frame types are distinguished: I-frames, P-frames, and B-frames.
I-frames are independent from any other frames, P-frames are based
on predictions from the last reference frame, and B-frames are
based on predictions from the previous and the following refer-
ence frames. A reference frame might be either an I-frame or a
P-frame, so only B-frames are totally unreferenced by any other
frame type.

If we look at a video bitstream, we can detect a pattern start-
ing with an I-frame followed by subsequent frame types which
might look like IBPBPB. This pattern might be repeated over the
whole video, or there will be different patterns encoded to imme-
diately react to scene changes. So the first frame after a scene cut
should be an I-frame, with any combination of following referenc-
ing frames.

Temporal scalability allows us to simply drop frames from a
stream. It is the decoder’s duty to interpolate over missing frames
or at least to keep playing out the latest frame until the next avail-
able frame can be presented.

The influence on the video by dropping a certain frame type
can be summarized as follows:

� B-frames can be dropped at will since there are no other
frames referencing them.



� When dropping a P-frame ��� , all previous B-frames forward-
referencing � � and all following � ������� and B-frames have
to be dropped, too:
IPBBPBBPBB(P)BBPBBI � IPBBPBBP(BBPBBPBB)I� Dropping I-frames means losing all following P- and B-
frames until the next I-frame, and again all forward refer-
encing B-frames. Since I-frames are used rarely in a frame
pattern, dropping I-frames makes nearly no sense.

To add more flexibility for possible adaptations, MPEG-4 also
supports a two-layer approach, where the base layer stores, e.g.,
I-B-P-B-P-B- and the enhancement layer stores -P-B-B-P-
B-B. When those two layers are interleaved, the received pattern
would be IPBBPBBPPBBB. Since the enhancement layer is totally
independent, we can also drop the whole enhancement layer (prob-
ably including P-frames) without interfering with any P-frames
stored in the base layer.

1     150,139 BpS
I− B− P− B− P− B

2 131,174 BpS
I− B− P− * − P− B

3 101,145 BpS
I− *− P− B− P− *

6 87,045 BpS
I− *− P− * − P− *

5 101,075 BpS
I− B− P− * − P− *

4 100,378 BpS
I− *− P− * − P− B

7 64,089 BpS
I− *− P− * − *− *

8 50,000 BpS
I− *− * − * − * − *

Figure 1: Tree of possible base layer modification patterns

Figure 1 shows a possible (non-exhaustive) modification tree
on a base layer pattern where some combinations are grayed out,
according to the following heuristics:

� Importance 	�
��������� Timely balanced distribution:

– Pattern I-*-P-*-P- better than I-B-P-*-*-

– Skipping the whole enhancement layer might even be
better than P-*-*-*-*-* (not worth the effort)

� Averaged signal-to-noise ratio (SNR) for modified patterns� Tree size vs. accuracy (grain) of scaling:

– Tree pruning with respect to the above mentioned heuris-
tics like timely balanced distribution

– Removal of similarly sized nodes based on threshold
values. Possible decision rules are:
� Preferring higher frame rates
� Preferring higher-quality patterns; e.g., (I-*-
P-*-P- is better than I-B-*-B-*-)

� and finally, qualitative knowledge gained from MPEG-7
meta-data descriptions [5], for example important scenes,
which are represented by a sequence of important frames.

So these grayed out modifications will not be included in the
pool of possible modification patterns. Only that reduced pool can
be utilized by the routers to select adaptations matching detected
bandwidth. Since we know the frame sizes for I-, P- and B-Frames
occurring in this pattern, we can store accumulated pattern band-
width requirements for each node. These bandwidth figures are
the main selection criteria for routers to choose a specific modifi-
cation.

The enhancement layer could be modified with the same rules
as the base layer tree, except the final node might be an empty one,
which means skipping the whole enhancement layer.

Dealing with layer-encoded streams will add further complex-
ity and adaptation restrictions to the above mentioned approach,
since the enhancement layer might refer to reference frames in the
base layer. Furthermore, pruning has to be done with respect to
the achievable “quality” of combinations of base and enhancement
layer patterns.

4. REALTIME STREAM ADAPTATION

To be efficient in the routers, we have to break down the already
pruned trees into lists or binary trees sorted by the needed band-
width per pattern (bits per second). These modification pools will
be transmitted to the downstream routers, so they can choose the
best fitting pattern modification. Video frames are sent via RTP [6]
using a standardized packet format for MPEG-4 [7].

Server

Router Client1
IPB*PB*PPBB*

Modification Pool
Base Layer:

{ I− B− P− B− P− B− ,
I− B− P− * − P− B− ,
I− * − P− B− P− * − ,
I− * − P− * − P− * − ,
I− * − P− * − * − * − ,
I− * − * − * − * − * − }

MMDB

MCAST

I− B− P− B− P− B−

− P− B− B− P− B− B

Modification Pool
Enhancement Layer:
{ − P− B− B− P− B− B,

− P− B− * − P− * − B,
− P− * − B− P− B− * ,
− P− * − * − P− * − * ,
− * − * − * − * − * − * }

I− B− P− * − P− B−

− P− * − B− P− B− *

 I− B− P− * −  P− B−

− P− * − B− P− B− *
Client2

IPB*PB*PPBB*

Figure 2: Clients requesting the same video quality

The Server reads the base layer and enhancement layer from
disk and only sends the requested frames to the next Router hop.
This next Router requests the maximum frame pattern of all con-
nected clients (or downstream routers). If, as is the case in Figure
2, the clients want the same quality, the adapted base and enhance-
ment layers are sent via multicast. To keep network traffic low, we
share as much information as possible in the multicast layers.

Server

Router Client1
IPB*P**PPB**

Modification Pool
Base Layer:

{ I− B− P− B− P− B− ,
I− B− P− * − P− B− ,
I− * − P− B− P− * − ,
I− * − P− * − P− * − ,
I− * − P− * − * − * − ,
I− * − * − * − * − * − }

MMDB

MCAST

I− B− P− B− P− B−

− P− B− B− P− B− B

Modification Pool
Enhancement Layer:
{ − P− B− B− P− B− B,

− P− B− * − P− * − B,
− P− * − B− P− B− * ,
− P− * − * − P− * − * ,
− * − * − * − * − * − * }

I− B− P− * − P− * −

− P− * − B− P− B− *

I− * − P− * − P− * −

− * − * − * − P− * − *

Client2
IP**PB**PB**

− * − * − B− * − * − *

− P− * − * − * − B− *

* − B− * − * − * − * −

Figure 3: Clients requesting different video quality levels

If clients have individual needs, as exemplified in Figure 3, the
Router generates shared base and enhancement layers and extracts



two new enhancement layers and one base layer adjusted for the
two clients. Since MPEG-4 compliant players are only capable of
one base layer and one enhancement layer, we have to add an intel-
ligent client-side “network tunnel” that puts together multicasted
and unicasted frames into a correct base and enhancement layer
format, which is eventually fed to the player.

5. COMMUNICATION PROTOCOL IN AN ADAPTIVE
ENVIRONMENT

1. A new Client sends initial specification of video name, res-
olution, environment, and more to the Router.

2. Router requests for the initial video information like resolu-
tion, colordepth, average bandwidth and average bandwidth
reached by maximum adaptivity.

3. Server sends first the modification pool with bandwidth re-
quirements.

4. Router checks available bandwidth to Clients.

5. Router requests necessary maximum frame pattern to serve
all connected Clients.

6. Server sends out the requested frame pattern and the next
modification pool (see Figure 4).

7. Router sends out the shared base and enhancement layer
frames via multicast.

8. Router generates the specific base and enhancement layers
and sends them to the connected Clients via unicast.

9. If no new clients arrive, go back to Step 4.

Patternn−2

ModPooln−1

Time to check for
 necessary adaptions
 & modification request

Patternn−1

Time to check for
 necessary adaptions
 & modification request

Patternn

Time to check for
 necessary adaptions
 & modification request

ModPooln ModPooln+1

time

Figure 4: Modification pool � ��� is sent with pattern ������� , so
there is enough time to react to changing bandwidth requirements

6. EFFICIENT BINARY REPRESENTATION OF
ADAPTATION DESCRIPTIONS

Presently our high-level model to describe modification patterns is
based on XML, like in MPEG-7 [5] and proposed for the MPEG-
21 Bitstream Syntax Definition Language [8] [9].

The communication model contains
� pre-sent video information, giving first information about

the video concerning resolution, min/max bandwidth needs
and general modification choices.

� per-pattern information packets, including modification pat-
terns from modification tree, according bandwidths and drop
lists.

� the modification choice, which is the local maximum of re-
quired client needs fitting a pattern from the modification
pool.

A detailed description with XML examples is given in [10].

RTPid (514) RTPseqNo (341634)

0 8 16 32 63

1 1 1 1 1 1 1 1kbps (150) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 padding 1 1 1 0 1 1 1 1kbps (135)

1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 padding kbps (120)

padding kbps (100)

padding 1 0 0 0 1 0 0 0kbps (70) 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 padding

NumFrames (34) NumMods (5)ScalingType reservedVersion

1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

Figure 5: Packet format for per-pattern modification pool

Since we cannot directly handle XML files on a router because
of performance issues, we have to devise a highly efficient binary
representation of at least the periodically sent per-pattern modifi-
cation pool. This low-level packet layout (Figure 5) is preferred,
because with our approach we keep the packet size at a minimum.
Other devices might still receive XML information.

7. IDEAS ON OPTIMIZATION

Even with the efficient packet layout for the regularly sent pattern
modification packets, we will add an average network load of ap-
proximately 60-100 bytes per pattern. In normal cases we can eas-
ily ignore this overhead, but on very low bandwidth networks, we
would like to further reduce the amount of data to send or process.

Given the case that� a video uses the same pattern repeatedly over the whole
lifetime (or at least for a couple of iterations),� the average needed bandwidth per pattern is very similar,� and the average frame sizes between and within the patterns
are similar,

we could merge multiple patterns into a pattern group. Each pat-
tern group will hereby represent, e.g., the next fifty patterns and
we calculate the pattern modification tree based on this averaged
pattern group.

After building a list of very few pattern groups reflecting the
whole video, we can send these few pattern modification lists within
the initially transmitted information. No further updates are nec-
essary.

Unfortunately our measurements on different videos with mul-
tiple qualities, patterns, and MPEG-4 encoders revealed that we
cannot rely on the above mentioned assumptions at all.

There are too high variations already on a frame-to-frame ba-
sis, which make a pattern group, given a reasonable threshold, too
small and patterns which seemed to belong to one pattern group
by having the same average bandwidth, would differ from each
other after applying modifications, which means dropping frames
on certain positions in the pattern (see Figure 6).

8. AVAILABLE SOFTWARE

We wrote a statistic suite capturing frame types and sizes, average
deviations with threshold triggers. We can detect patterns over
a video, again with average bandwidths and exact frame sizes,



0 200 400 600 800 1000 1200 1400 1600 1800
0

5000

10000

15000
Frame Sizes

Frame Numbers

F
ra

m
e 

S
iz

e 
in

 B
yt

es

I−Frame
P−Frame
B−Frame

Figure 6: Frame size variations

threshold triggers to indicate deviation to the prior patterns. We
aggregate patterns into pattern groups and we generate averaged
frame sizes and bandwidth requirements.

We support tools to simulate videos with dropped frames. For
control issues we have a tool to merge dropped frames back into
the original video.

Finally we have an implementation for transmitting MPEG-4
elementary streams over RTP networks.

For a more detailed description please refer to [10] and [7].

9. RELATED WORK

The problem concerning best effort networks and multicast video
distribution is well known. So there is work on scaling in active
routers [11] with introduced extra latency per hop. Other ideas dis-
cuss splitting of a video stream into multiple “thin” streams [12]
[13] without specifying a certain video codec. Splitting an MPEG-
4 stream into independent streams would lead to “thick” streams,
though. Anyway, thin streams are only sent on demand to multi-
cast subnets.

The importance of bi-directionally predicted frames (B-frames)
for scalability and packet loss is discussed in [14].

10. CONCLUSION AND FUTURE WORK

In this paper we outlined different types of scaling an MPEG-4
video to adapt to network bandwith changes. We described the
internal representation of an MPEG-4 video bitstream and intro-
duced the idea of pattern generation and modification of frame
groups to do realtime adaptation of a video stream on a router.
We outlined a communication protocol in an adaptive environ-
ment based on XML and described an efficient representation of
the XML content so it can be handled by a router.

Presently we are working on intelligent algorithms to generate
patterns to massively improve the quality of the video on clients
despite dropping frames on a router. Furthermore, we are trying to

deploy other methods for video scaling on a router different from
temporal scaling.

11. REFERENCES

[1] R. Koenen, “Overview of the MPEG-4
Standard,” ISO/IEC JTC1/SC29/WG11 N4030, March 2001.
http://mpeg.telecomitalialab.com/.

[2] R. Koenen, “Profiles and Levels in MPEG-4: Approach
and Overview,” Image Communication Journal. Tutorial
Issue on the MPEG-4 Standard, vol. 15, January 2000.
http://leonardo.telecomitalialab.com/icjfiles/mpeg-4 si/.

[3] W. Li, “Overview of Fine Granularity Scalability in MPEG-4
Video Standard,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 11, March 2001.

[4] C. Herpel and A. Eleftheriadis, “MPEG-4 Systems: Elemen-
tary Stream Management,” Image Communication Journal.
Tutorial Issue on the MPEG-4 Standard, vol. 15, January
2000. http://leonardo.telecomitalialab.com/icjfiles/mpeg-
4 si/.

[5] J. M. Martinez, “Overview of the MPEG-7 Standard,”
ISO/IEC JTC1/SC29/WG11 N4031, March 2001.

[6] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,
“RFC 1889: RTP: A Transport Protocol for Real-Time Ap-
plications,” January 1996.

[7] M. Ohlenroth and H. Hellwagner, “RTP
Packetization of MPEG-4 Elementary Streams,” Tech. Rep.
TR/ITEC/02/1.01, University Klagenfurt, February 2002.

[8] S. Devillers, “Bitstream Syntax Definition Language
(BSDL): An Input to MPEG-21 Content Representation,”
ISO/IEC JTC1/SC29/WG11 M7053, March 2001.

[9] A. Vetro, “MPEG-21 Requirements on Digital Item Adapta-
tion,” ISO/IEC JTC1/SC29/WG11 N4515, December 2001.

[10] M. Kropfberger, K. Leopold, and H. Hellwagner, “Investi-
gations Into Efficient Temporal Video Scaling,” Tech. Rep.
TR/ITEC/02/1.02, University Klagenfurt, February 2002.

[11] R. Keller, S. Choi, D. Decasper, M. Dasen, G. Fankhauser,
and B. Plattner, “An Active Router Architecture for Multi-
cast Video Distribution,” in IEEE Infocom 2000, (Tel Aviv),
March 2000.

[12] L. Wu, R. Sharma, and B. Smith, “Thin Streams: An Archi-
tecture for Multicasting Layered Video,” in NOSSDAV’97,
May 1997.

[13] R. Rejaie, M. Hanley, and D. Estrin, “Layered Quality Adap-
tation for Internet Video Streaming,” IEEE JSAC. Special Is-
sue on Internet QoS, Winter 2000.

[14] T. Shanableh and M. Ghanbari, “The Importance of the Bi-
Directionally Predicted Pictures in Video Streaming,” IEEE
Trans. Circuits and Systems for Video Technology, vol. 11,
March 2001.


